
Archivists' Toolkit (AT) Plugin Developer Guide
version 1.21

AT Development Team
January 01, 2011

Introduction

Beginning with version 1.5.9, plugin support was added to the Archivists Toolkit, AT. This guide
presents an overview for how to write plugins for the AT. Since the AT uses the JPF framework to
provide support for plugins, the reader is first advised to visit the JPF project site and read the tutorial
by Jean Lazarou on using the JPF in applications. Like the example applications in the tutorial, the AT
makes use of the JPF framework in the simplest way possible. This means that it does not allow for
dynamic plugin loading, nor does it have a nice plugin manager for installing and uninstalling plugins.

The plugin framework was added to the AT as way to provide a flexible, simple mechanism by which
developers can extend the functionality of the program without having to “touch” the underlying code
base. Functionality that can readily be added using plugins, includes custom import/export modules,
report generators, and even custom record (Resources, Accessions, Subjects, Names, and Digital
Objects) editors. Plugins that can be embedded into existing record editors can also be developed
(They will show up as an additional tab in the given editor). Essentially, plugins can provide a
convenient method in which to tailor the AT towards an institution's workflow.

Plugin Structure

Here is an example of the representative file structure for a typical AT plugin and the relevant
directories found in the AT install directory.

Here are the explanations of what is contained within the folders or files:

[AT_HOME_FOLDER]/lib
This contains all the AT jar library, as well as all the other libraries used by the AT. The
files in folder should to be in your classpath in order to build plugins. Plugins will
automatically have access to all these libraries; so there is no need to add them to the lib
folder of the plugin.

[AT_HOME_FOLDER]/

 +- lib/*.jar

 +- plugins/

[PLUGIN_HOME_FOLDER]/

 +- lib/

 +- src/

 +- classes/

 plugin.xml

http://jpf.sourceforge.net/tutorial.html
http://alef1.org/jean/jpf/
http://alef1.org/jean/jpf/

[AT_HOME_FOLDER]/plugins
Plugins which have been packaged as *.zip files go into this folder and are loaded when
the application starts up.

[PLUGIN_HOME_FOLDER]/lib
Libraries which are specific to the plugin go into this folder.

[PLUGIN_HOME_FOLDER]/src
The source code of the plugin goes here. It is not required to be distributed with the
packaged plugin.

[PLUGIN_HOME_FOLDER]/classes
The compiled classes of the plugins are kept here. The name of this folder does not
matter as the location of the classes are specified in the plugin.xml file. It is also
unnecessary to create jars of the compiled plugin classes since everything is going to be
packaged up as a zip file anyway.

[PLUGIN_HOME_FOLDER]/plugin.xml
This is the plugin manifest file and is used by the JPF when loading the plugin. The
name of this file cannot change.

Sample Plugin Manifest Files

As mentioned above, the AT makes use of the JPF in the most simplistic way. The manifest file for AT
plugins are pretty simple. Here is one for a plugin that loads an external library which is not part of the
libraries the AT uses. Consult the tutorial on the JPF site for a more in-depth discussion of the manifest
file.

<?xml version="1.0" ?>

<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 1.0"

"http://jpf.sourceforge.net/plugin_1_0.dtd">

<plugin id="org.archiviststoolkit.plugin.demo1.atplugindemo1" version="1.0"

class="org.archiviststoolkit.plugin.demo1.ATPluginDemo1">

<runtime>

<library id="atplugindemo1" path="/" type="code"/>

 <library id="at2ead" path="lib/at2ead.jar" type="code"/>

 </runtime>

</plugin>

http://jpf.sourceforge.net/tutorial.html

Plugin Interface

In order to be recognized as a plugin, a program must extend “org.java.plugin.Plugin” and implement
the “ATPlugin” interface. Please take a look at comments in the ATPlugin.java at the end of this
document for a good overview of the inner workings. Note: since “org.java.plugin.Plugin” is an
abstract class, the doStart() and doStop() method needs to be implemented, but for all practical
purposes these can be empty since they are not used within the AT context.

The current plugin interface defines methods that supports three categories plugins. The categories are
“import” for plugins that perform importing of legacy data, editor/viewer for plugins that allow
viewing/editing of records, and “default” for general purpose plugins. Import plugins are displayed
under the import menu, while default plugins go under the Plugin menu. The plugin menu is only
visible when plugins are detected in the “plugins” directory. Viewer/editor plugins are used in place of
the default AT record editors. Such plugins can be used to implement read only viewers for records or
for editors which is more tailored for a particular workflow.

Since a plugin may be capable of performing more than one task, they are able to define multiple tasks
and have those displayed under a submenu in either the Plugins or Import menu. For example if an
import plugin named “My Importer” defines three task called “Import A”, “Import B”, and “Import C”,
then each of those task will be under a submenu called “My Importer”. This functionality is
accomplished through use of the getTaskList() and doTask() methods.

Plugin Utility Class

Since the AT currently make use of Hibernate to persist Java objects to the backend database, a utility
class is provided that enable plugins to save Java objects to the database without having to worry about
object relational mapping. This is accomplished using the XStream library to serialize objects to XML,
which is then saved to the database. The XML encoded objects are retrieved from the database and
converted back to objects. This class also provides methods for saving AT records and for validating
them. Take a look at comments in ATPluginUtils.java for more detailed description of what this class
does.

Packaging and Installing a Plugin

In order to be recognized as a plugin, the Java classes, plugin.xml, and any other resource files needed
Must Be packaged as a zip file. Once this zip file is placed in the plugins folder of the AT, it should be
available for use once the application is restarted. At this point, there is no support for dynamic loading
of plugins in the AT but the underlying JPF framework does support this functionality so future AT
versions may have that capability.

Example Plugins

Please go the following site for a list of plugins that have been developed for the AT. If you would like
to get a plugin you developed posted to this site, please send an email to info@archiviststoolkit.org
with the subject “Add Plugin”.

mailto:info@archiviststoolkit.org
http://www.archiviststoolkit.org/forDevelopers/plugins/
http://xstream.codehaus.org/

Command Line Interface (CLI) Plugins

Starting with version 2.0 update 6, the AT now supports command line interface plugins. These are
intended to be loaded by the command line interface for the AT, atcli, without having to start-up the
main GUI program. Please note that atcli doesn't provide any functionality on its' own, but serves
merely to load plugins which provide the functionality. It also handles the process of login into the AT
database (provided a valid database password is provided), and allocating up to 1GB of memory to run
the plugin. It also handles setting of the Classpath. To use the command line interface, one needs to
simple install the plugin as usual and execute the following command (Mac OSX command is
atcli.command , on Linux it is atcli).

atcli.exe "database password" "plugin task" [additional plugin parameters separated by spaces]

Where "database password" is the password of the AT database, and "plugin task" the task the plugin
has registered in the getTaskList() method. Those two parameters are required, otherwise the program
will exit. Additional parameters can entered, separated by spaces. See the code below to see how to
access this parameters from within the plugin.

See the code below to see what methods need to be defined at minimum for a CLI plugin. Please note
that a plugin can be both a CLI and regular AT plugin. This is useful in a situation where the plugin
developer wants to provided user with a graphical way to configure the plugin.

Rapid Data Entry (RDE) Plugins

Also in version 2.0 update 6, support for Rapid Data Entry plugins have been added. These plugins are
sub-plugins which are added to the Rapid Data Entry Screen drop-down menu in the resource editor.
They can either launch a dialog, or execute program logic on the resource record, or currently selected
resource component.

Since they are sub plugins, they have to be added to a plugin which has defined
ATPlugin.EMBEDDED_EDITOR_CATEGORY as a category, and the editor type must contain
ATPlugin.RAPID_DATA_ENTRY_EDITOR. The getRapidDataEntryPlugins() method must also be
implemented since it returns the Hashmap containing any RDE plugins, keyed by their title.

To be defined has an RDE plugin the class must implement the RDEPlugin interface which is listed
below. Please note the multiple RDE plugins can be returned in this Hashmap making the system very
versatile.

See the source code for BatchDO, a plugin which automates the creation and attachments of digital
objects to resource components, to see how to implement support for RDE plugins.

Authentication Plugins

In version 2.0 update 10, support for authentication plugins have been added. These plugins are
intended to allow authentication (not authorization) of AT users through a single sign-on system, such
as a LDAP directory server. As such, users still need to be entered into the AT database as normal, just
that the entered passwords are checked against a central server through the plugin.

With a plugin installed, the login process is as follows. First, authentication credentials are checked
against those in AT database, and if that is successful, then the applications continues to load. If that
fails, then authentication is tried using the plugin, and if successful, then the application will load as
normal. This approach allows for using both AT authenticated, and plugin authenticated users
simultaneously.

The minimum requirements for a plugin to be used during the authentication process, is that has to have
ATPLugin.AUTHENTICATION_CATEGORY defined as a category and implement the doTask(String
task, String[] taskParams) method. The String array taskParams contains the username and password at
index 0 and 1 respectively. If authentication succeeded, then "true" should be returned, otherwise false
should be returned. See the code for sample ldap authentication plugin, LoginPlugin. This can server
as a starting point to implementing your own plugin, but may be already functional out of the box since
it simple tries to authenticate against a ldap server.

Demo CLI Plugin Source Code

 1:package org.archiviststoolkit.plugin.cli;
 2:
 3:import org.archiviststoolkit.ApplicationFrame;
 4:import org.archiviststoolkit.util.StringHelper;
 5:import org.archiviststoolkit.exporter.EADExport;
 6:import org.archiviststoolkit.editor.ArchDescriptionFields;
 7:import org.archiviststoolkit.model.Resources;
 8:import org.archiviststoolkit.mydomain.DomainAccessObject;
 9:import org.archiviststoolkit.mydomain.DomainEditorFields;
 10:import org.archiviststoolkit.mydomain.DomainObject;
 11:import org.archiviststoolkit.mydomain.ResourcesDAO;
 12:import org.archiviststoolkit.plugin.ATPlugin;
 13:import org.archiviststoolkit.swing.InfiniteProgressPanel;
 14:import org.java.plugin.Plugin;
 15:import org.hibernate.Session;
 16:
 17:import javax.swing.*;
 18:import java.awt.*;
 19:import java.util.HashMap;
 20:
 21:/**
 22: * Created by IntelliJ IDEA.
 23: * User: nathan
 24: * Date: Apr 19, 2010
 25: * Time: 8:01:58 PM
 26: *
 27: * This is a sample plugin which demonstrate how to develope
 28: * Command Line Interface, CLI, plugins for the AT. It also demonstrate
 29: * techniques for saving memory which is critical when batch processing
 30: * large amount of records.
 31: */
 32:public class cliPlugin extends Plugin implements ATPlugin {
 33: /**
 34: * get the category(ies) this plugin belongs to. For plugins that
 35: * are only used through the CLI then the below is fine. Additional
 36: * categories can be defined if this plugin is also to be used with
 37: * the main AT program
 38: */
 39: public String getCategory() {
 40: //return ATPlugin.CLI_CATEGORY + " " + ATPlugin.DEFAULT_CATEGORY;
 41: return ATPlugin.CLI_CATEGORY;
 42: }
 43:
 44: // get the name of this plugin
 45: public String getName() {
 46: return "Demo CLI Plugin v1.0";
 47: }
 48:
 49: /**
 50: * Method to actually execute the logic of the plugin. It is
 51: * automatically called by the atcli program so it needs to be
 52: * implemented
 53: *
 54: * @param task The task that is passed in as the second argument in
 55: * the command line parameters
 56: */
 57: public void doTask(String task) {
 58: // show the command line parameters
 59: String[] params =
org.archiviststoolkit.plugin.ATPluginFactory.getInstance().getCliParameters();
 60: for(int i = 0; i < params.length; i++) {
 61: System.out.println("Parameter " + (i+1) + " = " + params[i]);
 62: }
 63:
 64: /*
 65: * do a test by getting all the resource rocords and print name out
 66: * their name title and exprt as EAD. Thanks for Cyrus Farajpour
 67: * for providing some of this code
 68: */
 69:
 70: DomainAccessObject access = new ResourcesDAO();
 71:

 72: // get the list of all resources from the database
 73: java.util.List<Resources> resources;
 74:
 75: try {
 76: resources = (java.util.List<Resources>) access.findAll();
 77: } catch (Exception e) {
 78: resources = null;
 79: }
 80:
 81: int recordCount = resources.size();
 82:
 83: System.out.println("\nNumber of records found: " + recordCount);
 84:
 85: // Get the path where to export the files to from the command line arguments
 86: String exportRootPath = params[2];
 87:
 88: //dummy progress panel to pass into convertResourceToFile
 89: InfiniteProgressPanel fakePanel = new InfiniteProgressPanel();
 90:
 91: // print out the resource identifier and title and export as ead
 92: System.out.println("Exporting EADs ");
 93:
 94: // Get the runtime for clearing memory
 95: Runtime runtime = Runtime.getRuntime();
 96:
 97: // get the ead exporter
 98: EADExport ead = new EADExport();
 99:
 100: for(int i = 0; i <= recordCount; i++) {
 101: try {
 102: // load the full resource from database using a long session
 103: Resources resource =
(Resources)access.findByPrimaryKeyLongSession(resources.get(i).getIdentifier());
 104:
 105: System.out.println("[" + (i+1) + "] " +
resource.getResourceIdentifier() + " : " + resource.getTitle());
 106:
 107: String fileName =
StringHelper.removeInvalidFileNameCharacters(resource.getResourceIdentifier());
 108: java.io.File file = new java.io.File(exportRootPath + fileName +
".xml");
 109: file.createNewFile();
 110: ead.convertResourceToFile(resource, file, fakePanel, false, true, true,
true);
 111:
 112: // since we no longer need this resource, set it to null
 113: // close the session in an attemp to save memory
 114: resources.set(i, null);
 115: } catch (Exception e) {
 116: System.out.println(e);
 117: }
 118:
 119: // close the long session. This is critical to saving memory. If it's
 120: // left open then hinernate caches the resource records even though
 121: // we don't need them anymore
 122: access.getLongSession().close(); // close the connection
 123:
 124: // run GC to clear some memory after 10 exports, not sure if this is
 125: // really needed but running GC cost little in time so might as well?
 126: if(i%10 == 0 && i != 0) {
 127: System.out.println("\nRunning GC =>\nFree Memory Before " +
runtime.freeMemory());
 128: runtime.gc();
 129: System.out.println("Free Memory After " + runtime.freeMemory() + "\n");
 130: }
 131: }
 132:
 133: System.out.println("Finished Exporting ...");
 134: }
 135:
 136: /**
 137: * Method to get the list of specific task the plugin can perform. Only
 138: * the task at position 0 in the string array is checked in CLI plugins
 139: *
 140: * @return String array containing the task(s) the plugin is registered

 141: * to handel.
 142: */
 143: public String[] getTaskList() {
 144: String[] tasks = {"test"};
 145:
 146: return tasks;
 147: }
 148:
 149: /*
 150: *
 151: * Method below this point do not need to implemented in a command line plugin,
 152: * but can be for those that also have GUIs, for example for configuration.
 153: *
 154: */
 155:
 156: public void setApplicationFrame(ApplicationFrame mainFrame) { }
 157:
 158: public void showPlugin() { }
 159:
 160: public void showPlugin(Frame owner) { }
 161:
 162: public void showPlugin(Dialog owner) { }
 163:
 164: public HashMap getEmbeddedPanels() { return null; }
 165:
 166: public void setEditorField(ArchDescriptionFields editorField) { }
 167:
 168: public void setEditorField(DomainEditorFields domainEditorFields) { }
 169:
 170: public void setModel(DomainObject domainObject, InfiniteProgressPanel monitor) { }
 171:
 172: public void setCallingTable(JTable callingTable) { }
 173:
 174: public void setSelectedRow(int selectedRow) { }
 175:
 176: public void setRecordPositionText(int recordNumber, int totalRecords) { }
 177:
 178: public String getEditorType() {return null; }
 179:
 180: protected void doStart() { }
 181:
 182: protected void doStop() { }
 183:}

ATPlugin Interface Source Code

 1:package org.archiviststoolkit.plugin;
 2:
 3:import org.archiviststoolkit.ApplicationFrame;
 4:import org.archiviststoolkit.editor.ArchDescriptionFields;
 5:import org.archiviststoolkit.swing.InfiniteProgressPanel;
 6:import org.archiviststoolkit.mydomain.DomainObject;
 7:import org.archiviststoolkit.mydomain.DomainEditorFields;
 8:
 9:import javax.swing.*;
 10:import java.awt.*;
 11:import java.util.HashMap;
 12:
 13:/**
 28: * The simple plugin interface which all AT Plugins need to be implement in
 29: * order to be loaded into the AT
 30: * <p/>
 31: * Created by IntelliJ IDEA.
 32: *
 33: * @author: Nathan Stevens
 34: * Date: Feb 10, 2009
 35: * Time: 11:03:24 AM
 36: */
 37:public interface ATPlugin {
 38: // plugin will be displayed under the plugin menu
 39: final String DEFAULT_CATEGORY = "default";
 40:
 41: // plugin will be displayed under the import menu
 42: final String IMPORT_CATEGORY = "import";
 43:
 44: // plugin will be displayed under the tool menu
 45: final String TOOL_CATEGORY = "tool";
 46:
 47: // plugin will be used to view records instead of the default editor
 48: final String VIEWER_CATEGORY = "view";
 49:
 50: // plugin will be used to view/edit records instead of the default editor
 51: final String EDITOR_CATEGORY = "edit";
 52:
 53: // plugin will be used embedded into an existing domain editor
 54: final String EMBEDDED_EDITOR_CATEGORY = "embedded";
 55:
 56: // plugin will be used with the command line interface of the AT. This
functionality will require additional code
 57: final String CLI_CATEGORY = "cli";
 58:
 59: /*
 60: The list of editor types. They can be combined to specify a plugin that
 61: supports viewing and editing multiple type of records. For example, a
 62: developer can choose to create a plugin that supports viewing and
 63: editing of Names, Subjects, and Digital Object Records with the following
 64: string:
 65: editorType = NAMES_EDITOR + " " + SUBJECT_EDITOR + " " + DIGITALOBJECT_EDITOR;
 66: */
 67:
 68: // plugin that can edit or view resource records
 69: final String RESOURCE_EDITOR = "resource";
 70:
 71: // plugin that can edit or view resource components
 72: final String RESOURCE_COMPONENT_EDITOR = "component";
 73:
 74: // plugin that can edit or view digital object records
 75: final String DIGITALOBJECT_EDITOR = "digital";
 76:
 77: // plugin that can edit or view name records
 78: final String NAME_EDITOR = "name";
 79:
 80: // plugin that can edit or view subject records
 81: final String SUBJECT_EDITOR = "subject";
 82:
 83: // plugin that can edit or view subject records
 84: final String ACCESSION_EDITOR = "accession";
 85:

 86: //plugin that can edit or view instant records
 87: final String INSTANCE_EDITOR = "instance";
 88:
 89: //plugin that can edit or view assessment records
 90: final String ASSESSMENT_EDITOR = "assessment";
 91:
 92: //plugin that loads in the RDE drop down menu
 93: final String RAPID_DATA_ENTRY_EDITOR = "rde";
 94:
 95: // plugin that can edit or view all the main AT records.
 96: final String ALL_EDITOR = "all";
 97:
 98: /**
 99: * Method to get the category of the plugin
 100: * i.e. default, import, view or edit
 101: *
 102: * @return String that specify the category type
 103: */
 104: public String getCategory();
 105:
 106: /**
 107: * Method to return the name of the plugin. If the plugin category
 108: * is either import or default, this name appears in the menu
 109: *
 110: * @return Returns the plugin names
 111: */
 112: public String getName();
 113:
 114: /**
 115: * Method to set the application frame. In the AT, the application
 116: * frame provides a means to access the current worksurface and hence
 117: * the displayed records. This method is called every time a plugin is
 118: * selected in the menu.
 119: *
 120: * @param mainFrame The main AT application frame
 121: */
 122: public void setApplicationFrame(ApplicationFrame mainFrame);
 123:
 124: /**
 125: * Method to display the plugin or do anything else the plugin
 126: * requires when selected from the plugin or import menu, if
 127: * it doesn't define a task list.
 128: */
 129: public void showPlugin();
 130:
 131: /**
 132: * Method to display a plugin that needs a parent frame.
 133: * This method is not currently used in the AT so it
 134: * can be left blank.
 135: *
 136: * @param owner The parent frame of this plugin
 137: */
 138: public void showPlugin(Frame owner);
 139:
 140: /**
 141: * Method to display a plugin that needs a parent dialog.
 142: * Not currently used in the AT, so it can be left blank.
 143: *
 144: * @param owner The parent dialog of this plugin
 145: */
 146: public void showPlugin(Dialog owner);
 147:
 148: /**
 149: * Method to return a hashmap containing jpanels for plugins that are not
 150: * dialog or frames. This is used for plugins that are to be embedded
 151: * in a Domain Editor. The hasmap is keyed using the plugin names.
 152: * <p/>
 153: * The format of the plugin name can also be used to specify the location
 154: * and whether to remove a planel already at that location.
 155: * <p/>
 156: * Format to use is panel_name::location::yes, no, main
 157: * Examples >>
 158: * New Editor Panel::0::yes (replace panel at index zero with this one)
 159: * New Editor Panel::0::no (just insert the panel at zero)
 160: * New Editor Panel::0::main (In Subjects editor only remove all other

 161: * components in the panel and add this panel)
 162: *
 163: * @return The HashMap containing JPanels and their display name
 164: */
 165: public HashMap getEmbeddedPanels();
 166:
 167: /**
 168: * Method to return hashmap containing RDEPlugin objects which are listed
 169: * under the RDE drop down menu in the resources editor. Such plugins
 170: * may launch a dialog or may just execute the some logic agains the
 171: * currently selected respurce component or resource record.
 172: *
 173: * @return The HashMap containing RDEPlugins and display names
 174: */
 175: public HashMap getRapidDataEntryPlugins();
 176:
 177: /**
 178: * Method to set the editor field. This is used by embeddable
 179: * plugins so that they can gain access to public method of the
 180: * editor field.
 181: *
 182: * @param editorField The editor field the plugin is embedded into
 183: */
 184: public void setEditorField(ArchDescriptionFields editorField);
 185:
 186: /**
 187: * Method to set the editor field. This is used by embeddable
 188: * plugins so that they can gain access to public method of the
 189: * editor field.
 190: *
 191: * @param editorField The editor field the plugin is embedded into
 192: */
 193: public void setEditorField(DomainEditorFields editorField);
 194:
 195: /**
 196: * Method to do a specific task in the plugin. This method is
 197: * implemented by plugins that are can do multiple task.
 198: * For example an importer for multiple file types. Its called
 199: * each time a plugin that defines a task list is selected
 200: * from the import or plugin menu.
 201: *
 202: * @param task The task for the plugin to do
 203: */
 204: public void doTask(String task);
 205:
 206: /**
 207: * Method to get the list of specific task the plugin can perform.
 208: * This task are displayed in submenus under either the import or
 209: * plugin menu.
 210: *
 211: * @return A list of task this plugin can perform
 212: */
 213: public String[] getTaskList();
 214:
 215: /*
 216: * Methods below this point are to be implemented by plugins which
 217: * are used as DomainObject Viewers and/or Editors. The are always
 218: * called by the AT if the plugin category is defined as a
 219: * viewer or editor
 220: */
 221:
 222: /**
 223: * Method to return the type of domain objects this plugin can edit or
 224: * view. This method is used by plugins that are implemented as an editor
 225: * for one or more of the main domain objects such Names, Subjects,
 226: * Accessions, Resources, and Digital Objects. Plugins that supports
 227: * the supports the viewing and/or editing of multiple record types
 228: * can be specify in the following manner: A plugin that supports viewing
 229: * and/or editing of Names, Subjects, and Digital Object Records
 230: * will return the following String:
 231: * editorType = NAMES_EDITOR + " " + SUBJECT_EDITOR + " " + DIGITALOBJECT_EDITOR
 232: * If a plugin returns ALL_EDITOR it means it can view
 233: * and/or edit all main AT records.
 234: *
 235: * @return The type or types of records an editor/viewer plugin can open.

 236: */
 237: public String getEditorType();
 238:
 239: /**
 240: * Method to set the domain model. This is always called by the AT
 241: *
 242: * @param domainObject The domain object
 243: * @param monitor The progress monitor
 244: */
 245: public void setModel(DomainObject domainObject, InfiniteProgressPanel monitor);
 246:
 247: /**
 248: * Method to get the table from which the record was selected.
 249: *
 250: * @param callingTable The table containing the record
 251: */
 252: public void setCallingTable(JTable callingTable);
 253:
 254: /**
 255: * Method to set the selected row of the calling table. This lets the
 256: * plugin know the current row selection
 257: *
 258: * @param selectedRow The selected row
 259: */
 260: public void setSelectedRow(int selectedRow);
 261:
 262: /**
 263: * Method to set the current record number along with the total
 264: * number of records
 265: *
 266: * @param recordNumber The current record number
 267: * @param totalRecords The total number of records
 268: */
 269: public void setRecordPositionText(int recordNumber, int totalRecords);
 270:}

RDEPlugin Interface Source Code

 1:package org.archiviststoolkit.plugin;
 2:
 3:import org.archiviststoolkit.model.ResourcesCommon;
 4:import org.archiviststoolkit.mydomain.DomainObject;
 5:import org.archiviststoolkit.model.Resources;
 6:
 7:import javax.swing.*;
 8:
 9:/**
 24: *
 25: * This interface is implemented by rapid data entry plugins which are
 26: * loaded into the rapid data entry screen drop-down menu in resource
 27: * editor
 28: *
 29: * Created by IntelliJ IDEA.
 30: *
 31: * @author: Nathan Stevens
 32: * Date: Jul 13, 2010
 33: * Time: 2:35:06 PM
 34: */
 35:public interface RDEPlugin {
 36: /**
 37: * Method to set the domain model. This is always called when the plugin
 38: * are loaded
 39: *
 40: * @param parentRecord The parent resource record
 41: * @param resourcesCommon This can either be a resource component or
 42: * the parent resource record
 43: */
 44: public void setModel(Resources parentRecord, ResourcesCommon
 45: resourcesCommon);
 46:
 47: /**
 48: * Method to specify whether this plugin launches a dialog, or
 49: * just executes business logic on the currently selected
 50: * resource component
 51: *
 52: * @return boolean to specify wheather this plugin has a dialog
 53: */
 54: public boolean hasDialog();
 55:
 56: /**
 57: * Method to run program logic. This method is called when the hasDialog
 58: * method returns false.
 59: */
 60: public void doTask();
 61:
 62: /**
 63: * Method to display a dialog to user. It is called when a call
 64: * to the hasDialog method returns true
 65: *
 66: * @param dialog The parent dialog
 67: * @param title The title of dialog
 68: */
 69: public void showPlugin(JDialog dialog, String title);
 70:}

ATPluginUtils Source Code

 1:package org.archiviststoolkit.plugin;
 2:
 3:import org.archiviststoolkit.model.ATPluginData;
 4:import org.archiviststoolkit.model.validators.ATValidator;
 5:import org.archiviststoolkit.model.validators.ValidatorFactory;
 6:import org.archiviststoolkit.mydomain.DomainAccessObject;
 7:import org.archiviststoolkit.mydomain.DomainAccessObjectFactory;
 8:import org.archiviststoolkit.mydomain.DomainObject;
 9:import org.archiviststoolkit.util.JGoodiesValidationUtils;
 10:import com.thoughtworks.xstream.XStream;
 11:import com.jgoodies.validation.ValidationResult;
 12:
 13:import java.util.Collection;
 14:import java.awt.*;
 15:
 16:/**
 32: * This is a utility class to make it easier for plugin developers to save
 33: * data to the AT database and perform validation on AT records.
 34: *
 35: * @author: Nathan Stevens
 36: * Date: Feb 11, 2009
 37: * Time: 8:07:58 PM
 38: */
 39:public class ATPluginUtils {
 40: /**
 41: * Method to save text data to the database
 42: *
 43: * @param pluginName The name of the plugin
 44: * @param dataVersion The dataVersion
 45: * @param dataName The name of the data
 46: * @param dataType The type of data
 47: * @param dataString The text data to save
 48: * @throws Exception is thrown if there was a problem saving the data
 49: */
 50: public static void saveData(String pluginName, int dataVersion,
 51: String dataName, String dataType,
 52: String dataString) throws Exception {
 53: ATPluginData pluginData =
 54: new ATPluginData(pluginName, false, dataVersion,
 55: dataName, dataType, dataString);
 56: saveToDatabase(pluginData);
 57: }
 58:
 59: /**
 60: * Method that first converts a java object to an xml string
 61: * then save it to the database
 62: *
 63: * @param pluginName The name of the plugin
 64: * @param dataVersion The dataVersion
 65: * @param dataName The name of the data
 66: * @param dataType The type of data
 67: * @param dataObject The object that contains the data or is the data
 68: * @throws Exception is thrown if there was a problem saving the data
 69: */
 70: public static void saveData(String pluginName, int dataVersion,
 71: String dataName, String dataType,
 72: Object dataObject) throws Exception {
 73: // use Xstream to convert the java object to an xml string
 74: XStream xstream = new XStream();
 75: String dataString = xstream.toXML(dataObject);
 76:
 77: ATPluginData pluginData =
 78: new ATPluginData(pluginName, true, dataVersion,
 79: dataName, dataType, dataString);
 80: saveToDatabase(pluginData);
 81: }
 82:
 83: /**
 84: * Saves plugin data object to the database
 85: *
 86: * @param pluginData The plugin data object
 87: * @throws Exception If there is any problems saving to the database

 88: */
 89: public static void saveToDatabase(ATPluginData pluginData) throws Exception {
 90: try {
 91: DomainAccessObject access =
 92:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(ATPluginData.class);
 93: access.getLongSession();
 94: access.updateLongSession(pluginData);
 95: } catch(Exception e) {
 96: e.printStackTrace();
 97: throw new Exception("Error Saving Plugin Data to Database ...");
 98: }
 99: }
 100:
 101: /**
 102: * Method to delete plugin data in the database
 103: *
 104: * @param pluginData The plugin data
 105: * @throws Exception if there was a problem deleting that data
 106: */
 107: public static void deletePluginData(ATPluginData pluginData) throws Exception {
 108: try {
 109: DomainAccessObject access =
 110:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(ATPluginData.class);
 111: access.getLongSession();
 112: access.deleteLongSession(pluginData);
 113: } catch(Exception e) {
 114: e.printStackTrace();
 115: throw new Exception("Error Deleting Plugin Data to Database ...");
 116: }
 117: }
 118:
 119: /**
 120: * Method to get all the saved data for a certain plugin
 121: *
 122: * @param pluginName The name of the plugin
 123: * @return Collection containing any data they found
 124: * @throws Exception
 125: */
 126: public static Collection getData(String pluginName) throws Exception {
 127: try {
 128: DomainAccessObject access =
 129:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(ATPluginData.class);
 130: return access.findByPropertyValue("pluginName", pluginName);
 131: } catch(Exception e) {
 132: e.printStackTrace();
 133: throw new Exception("Error Getting Plugin Data from Database ...");
 134: }
 135:
 136: }
 137:
 138: /**
 139: * Method to get all the saved data for a particular plugin and data type
 140: *
 141: * @param pluginName The name of the plugin
 142: * @param dataType The data type of the plugin
 143: * @return A collection containing any data that was found
 144: * @throws Exception is thrown of there is a problem find the data
 145: */
 146: public static Collection getData(String pluginName, String dataType) throws
Exception {
 147: try {
 148: DomainAccessObject access =
 149:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(ATPluginData.class);
 150: ATPluginData pluginData = new ATPluginData();
 151: pluginData.setPluginName(pluginName);
 152: pluginData.setDataType(dataType);
 153: return access.findByExample(pluginData);
 154: } catch(Exception e) {
 155: e.printStackTrace();
 156: throw new Exception("Error Getting Plugin Data from Database ...");
 157: }

 158: }
 159:
 160: /**
 161: * Method to return a string object or xml encoded object
 162: * found in the database. If more than one data object with
 163: * the same name is found then the first one is return.
 164: *
 165: * @param pluginName The name of the plugin
 166: * @param dataName The name of the data
 167: * @return The data object
 168: * @throws Exception If there is a problem finding the data from the database
 169: */
 170: public static Object getDataByName(String pluginName, String dataName) throws
Exception {
 171: try {
 172: DomainAccessObject access =
 173:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(ATPluginData.class);
 174: ATPluginData pluginData = new ATPluginData();
 175: pluginData.setPluginName(pluginName);
 176: pluginData.setDataName(dataName);
 177: Collection collection = access.findByExample(pluginData);
 178:
 179: // get the plugin data object returned from the database only return the
first one
 180: if(collection != null) {
 181: Object[] dataFound = collection.toArray();
 182: pluginData = (ATPluginData)dataFound[0];
 183: if(pluginData.getIsObject()) { // xml encoded object so convert it to
an object
 184: return getObjectFromPluginData(pluginData);
 185: } else { // just return the plain data string
 186: return pluginData.getDataString();
 187: }
 188: } else {
 189: return null;
 190: }
 191: } catch(Exception e) {
 192: e.printStackTrace();
 193: throw new Exception("Error Getting Plugin Data from Database ...");
 194: }
 195: }
 196:
 197: /**
 198: * Method to return an object from plugin data using
 199: * xstream to convert the saved xml to an object
 200: *
 201: * @param pluginData The ATPluginDataContaining the xml encoded object
 202: * @return The converted object or null if conversion can't be done
 203: */
 204: public static Object getObjectFromPluginData(ATPluginData pluginData) {
 205: if(pluginData != null && pluginData.getIsObject()) {
 206: XStream xstream = new XStream();
 207: return xstream.fromXML(pluginData.getDataString());
 208: } else {
 209: return null;
 210: }
 211: }
 212:
 213: /**
 214: * Method to save an AT record to the database.
 215: *
 216: * @param record The AT record to save to the database.
 217: * @throws Exception if there is a problem saving the record to the database
 218: */
 219: public static void saveRecordToDatabase(DomainObject record) throws Exception {
 220: try {
 221: Class clazz = record.getClass();
 222:
 223: DomainAccessObject access =
 224:
DomainAccessObjectFactory.getInstance().getDomainAccessObject(clazz);
 225: access.getLongSession();
 226: access.updateLongSession(record);
 227: } catch(Exception e) {

 228: e.printStackTrace();
 229: throw new Exception("Error Saving Record to Database ...");
 230: }
 231: }
 232:
 233: /**
 234: * Method to valid a AT record. Calling this ensures that no invalid
 235: * records are saved to the database
 236: *
 237: * @param component UI component that is requesting validation of the record
 238: * @param record The AT record to validate
 239: * @return true if the record valide, false otherwise
 240: */
 241: public static boolean validateRecord(Component component, DomainObject record) {
 242: ATValidator validator = ValidatorFactory.getInstance().getValidator(record);
 243: if (validator == null) {
 244: //nothing registered so just return true
 245: return true;
 246: } else {
 247: ValidationResult validationResult = validator.validate();
 248: if (validationResult.hasErrors()) {
 249: JGoodiesValidationUtils.showValidationMessage(
 250: component,
 251: "To save the record, please fix the following errors:",
 252: validationResult);
 253: return false;
 254: }
 255: if (validationResult.hasWarnings()) {
 256: JGoodiesValidationUtils.showValidationMessage(
 257: component,
 258: "Note: some fields are invalid.",
 259: validationResult);
 260: }
 261: return true;
 262: }
 263: }
 264:}

